Numerical model for 3D steel moment frames with H-shaped beams and hollow-section columns under multi-directional seismic ground motions
نویسندگان
چکیده
In Japan, steel moment frames comprising H-shaped beams and square hollow-section columns with through diaphragms are often used for low- to middle-rise building structures. The column overdesign factor—strength ratio between beams—is specified as ≥1.5 in Japanese seismic design code ensure adequate energy absorption capacity against bidirectional ground motion by achieving an entire beam-hinging collapse mechanism. However, the required factor of is obtained from analysis results conducted under unidirectional motions. Additionally, numerical models most previous studies considered behavior only columns, ignored panel zone beam–column connection. Nevertheless, may yield severe earthquakes. addition, influence panels on subjected not completely understood, a model shear forces biaxial bending moments yet be proposed. Thus, this research proposes novel studying multi-directional loadings consider 3D elastoplastic well panels. proposed was validated analyzing cruciform subassemblies beams, panels, were compared experimental studies. Furthermore, time-history response frames, dissipated plastic deformation within each connection discussed aspect strength ratios structural members.
منابع مشابه
ERFORMANCE-BASED SEISMIC DESIGN OPTIMIZATION OF COMPOSITE MOMENT RESISTING FRAMES WITH CONCERETFILLED STEEL COLUMNS AND STEEL BEAMS
In this paper, an optimization framework is developed for performance-based seismic design of composite moment frames consisting of concrete filled steel box columns and I-shaped steel beams. Material cost of the structure and seismic damage under severe earthquake ground motions are minimized as objective functions. Two design examples are presented to demonstrate the applicability and efficie...
متن کاملOPTIMAL PERFORMANCE-BASED SEISMIC DESIGN OF COMPOSITE BUILDING FRAMES WITH RC COLUMNS AND STEEL BEAMS
Composite RCS building frames integrate reinforced concrete columns with structural steel beams to provide an efficient solution for the design and construction of earthquake-resisting structures. In this paper, an optimization framework is developed for performance-based seismic design of planar RCS moment resisting frames. The objective functions are defined as minimizing the construction cos...
متن کاملSelection of Optimal Intensity Measure for Seismic Assessment of Steel Buckling Restrained Braced Frames under Near-Fault Ground Motions
Buckling restrained braces (BRBs) have a similar behavior under compression and tension loadings. Therefore, they can be applied as a favorable lateral load resisting system for structures. In the performance-based earthquake engineering (PBEE) framework, an intermediate variable called intensity measure (IM) links the seismic hazard analysis with the structural response analyses. An optimal IM...
متن کاملtight frame approximation for multi-frames and super-frames
در این پایان نامه یک مولد برای چند قاب یا ابر قاب تولید شده تحت عمل نمایش یکانی تصویر برای گروه های شمارش پذیر گسسته بررسی خواهد شد. مثال هایی از این قاب ها چند قاب های گابور، ابرقاب های گابور و قاب هایی برای زیرفضاهای انتقال پایاست. نشان می دهیم که مولد چند قاب تنک نرمال شده (ابرقاب) یکتا وجود دارد به طوری که مینیمم فاصله را از ان دارد. همچنین مسایل مشابه برای قاب های دوگان مطرح شده و برخی ...
15 صفحه اولSeismic Behavior of Steel Reinforced Concrete Beam-Columns and Frames
The ability to perform accurate nonlinear simulations is a key component in the assessment of the behavior of seismic force resisting systems. A three-dimensional distributed plasticity formulation for composite beam-columns suitable for nonlinear static and dynamic analyses of composite seismic force resisting systems has been developed. New uniaxial constitutive relations are developed for th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Engineering Structures
سال: 2021
ISSN: ['0141-0296', '1873-7323']
DOI: https://doi.org/10.1016/j.engstruct.2021.112730